Swarm Optimization Algorithms Incorporating Design Sensitivities

نویسندگان

  • Kazuhiro Izui
  • Shinji Nishiwaki
  • Masataka Yoshimura
چکیده

1. Abstract Swarm algorithms such as Particle Swarm Optimization (PSO) are non-gradient probabilistic optimization algorithms that have been successfully applied to obtain global optimal solutions for complex problems such as multi-peak problems. However these algorithms have not been applied to complicated structural and mechanical optimization problems since local optimization capability is still inferior to general numerical optimization methods. This paper discusses new swarm metaphors that incorporate design sensitivities concerning objective and constraint functions and are applicable to structural and mechanical design optimization problems. Singleand multiobjective optimization techniques using swarm algorithms are combined with a sequential linear programming (SLP) method. In the proposed techniques, swarm optimization algorithms and SLP are conducted simultaneously. Finally, truss structure design optimization problems are solved by the proposed hybrid method to verify the optimization efficiency. 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PARTICLE SWARM-GROUP SEARCH ALGORITHM AND ITS APPLICATION TO SPATIAL STRUCTURAL DESIGN WITH DISCRETE VARIABLES

Based on introducing two optimization algorithms, group search optimization (GSO) algorithm and particle swarm optimization (PSO) algorithm, a new hybrid optimization algorithm which named particle swarm-group search optimization (PS-GSO) algorithm is presented and its application to optimal structural design is analyzed. The PS-GSO is used to investigate the spatial truss structures with discr...

متن کامل

A New Approach of Backbone Topology Design Used by Combination of GA and PSO Algorithms

A number of algorithms based on the evolutionary processing have been proposed forcommunication networks backbone such as Genetic Algorithm (GA). However, there has beenlittle work on the SWARM optimization algorithms such as Particle Swarm Optimization(PSO) for backbone topology design. In this paper, the performance of PSO on GA isdiscussed and a new algorithm as PSOGA is proposed for the net...

متن کامل

Optimal Design of a Brushless DC Motor, by Cuckoo Optimization Algorithm (RESEARCH NOTE)

This contribution deals with an optimal design of a brushless DC motor, using optimization algorithms, based on collective intelligence. For this purpose, the case study motor is perfectly explained and its significant specifications are obtained as functions of the motor geometric parameters. In fact, the geometric parameters of the motor are considered as optimization variables. Then, the obj...

متن کامل

Investigate the Applicability of Gray Wolf Optimization Algorithm in Determining the Optimal Dimensions of Concrete Dams

Acquiring optimal dimensions of concrete dams by reducing the cross section will reduce the volume of concrete used and consequently reduce construction costs. Due to multiplicity of constraints which leads to complexity of the decision space, meta-heuristic optimization algorithms have been increasingly used in optimal design of gravity dams. In this study, performance of Grey Wolf Optimizer w...

متن کامل

Application of Particle Swarm Optimization and Its Variant for Optimum Load Shedding

This paper describes a methodology for obtaining minimum load-shed at selected buses from voltage stability margin viewpoint. The buses for load-shed have been selected based on line voltage stability index and its sensitivities at operating point. Computational algorithms for minimum load-shed have been developed using conventional particle swarm optimization (PSO) and coordinated aggregation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005